Advanced Operating System Quiz

Name	e:	Sciper Number:	Score:	
MC	Qs:	$(2 \times 12 = 24)$		
1.	a.	is the meaning of the following GCC inline assemb asm("mov1 %ecx, %eax") Move content in register %ecx to %eax Move content in register %eax to %ecx	ly?	A
2.	When progra	None of above the paging mechanism is enabled, what kind of act am use? Physical address Virtual address External address	ddress does the userspa	ace B
3.	Suppo beginn the LF a. b. c.	None of above use DRAM has a capacity of 3 pages. There are not ning. Suppose the virtual page access sequence is RU replacement policy, how many page faults will be a capacity of 3 and 4 are not appeared to 1 and 1	0,1,2,0,1,3,0,3,1,0,3. If	
	Let's a is 4KE in the a. b. c. d.	assume L1 cache size is 32KB with cache line size 3. What are the maximum and minimum TLB entrie L1 cache, respectively? 2^9 and 2^3 2^12 and 2^6 2^9 and 2^9 2^3 and 2^3 bages are thrashing between DRAM and swap, who	es required to cover all t	he data A
J.	thrash a. b.		non methods can reduc	В
6.	mecha a. b. c.	ose a user-mode process attempts to write to a file anism that this process needs to invoke to accomp Trap System call Exception Non-maskable interrupt (NMI)		me of the

- 7. IPI is a special form of interrupt that:
 - a. Interrupts another CPU synchronously
 - b. Interrupts another CPU asynchronously
 - c. No OS uses it.
 - d. Is specifically used for scheduling tasks.
- 8. Consider the scenario in which two processes run on an operating system that uses a multilevel feedback queue (MLFQ) scheduling algorithm with two priority queues. Processes in the highest priority queue have a time-slice of 5 ms, while the ones in the lowest priority queue have a time-slice of 10 ms. Processes A and B start at the highest priority queue, and process A is scheduled first. Process A runs for 5 ms and is then preempted by the operating system. Process B then runs for 2 ms and then yields. What is the next process that will be scheduled, and how long will its time-slice be? C
 - a. Process A, with a 5 ms time-slice
 - b. Process A with a 10 ms time-slice
 - c. Process B with a 5 ms time-slice
 - d. Process B with a 10 ms time-slice
- 9. How many child processes are created in the following code snippet?

```
for (int i = 0; i < 3; ++i)
    fork();</pre>
```

- a. 4
- b. 6
- c. 7
- d. 8
- 10. Consider a storage device with 4 KB-sized blocks. Assume that the file system uses a multilevel inode data structure to track the data blocks of a file. The inode has 64 bytes of space to store pointers to data blocks, including a single indirect block, a double indirect block, and several direct blocks. What maximum file size can be stored in such a file system?
 - a. 64*4KB
 - b. 8*4KB + 64*4KB
 - c. (4KB/8)*4KB + (4KB/8)*(4KB*8)*4KB + 6*4KB
 - d. (4KB/8)*(4KB*8)*4KB + 6*4KB
- 11. Consider a system with 10 Disks. For each of the following RAID levels, how many disks does a system get to use to store actual data for RAID0, RAID1, and RAID4 respectively?
 - a. 10, 5, 9
 - b. 5, 10, 9
 - c. 9, 10, 5
 - d. 10, 10, 9

В

С

- 12. Which mechanism below is NOT used to ensure the crash consistency in a file system D
 - a. Journaling
 - b. Copy-on-Write
 - c. Write-ahead-log
 - d. Monitor

Fill in the blanks: 6

13.	The CPU realizes that	it is running the ker	rnel code by checl	king the	
	CR3				
14.	The OS relies on	_Interrupts	to take th	e control ba	ack from a
	userspace process and	d schedule other pr	ocesses fairly.		
15.	One must allocate a se	eparate trap table fo	or every syscall	False	(True/False)
16.	Thekernel/ interru	pt handler	is responsible	e for handlir	ng concurrent
	syscalls and interrupts interrupt handler routing		<u> </u>		~

Writing questions:

17. What is wrong with the following code: 6

```
1. #include <stdatomic.h>
2. #include <stdbool.h>
3.
4. typedef struct {
      atomic_int lock;
6. } spinlock_t;
7.
8. void spinlock_init(spinlock_t *s) {
       s->lock = 1;
10.
11.
12. void spinlock_lock(spinlock_t *s) {
13.
         while (atomic_compare_exchange_strong(&s->lock,
     &(int){0}, 1)) {
14.
15.
         }
16.
```

```
17.
18.
     void spinlock_unlock(spinlock_t *s) {
19.
          s \rightarrow lock = 0;
20.
     }
21.
22.
     int main() {
23.
          spinlock_t my_spinlock;
24.
          spinlock_init(&my_spinlock);
25.
26.
         // Code to test the spinlock would go here.
27.
          spinlock_lock(&my_spinlock);
28.
         // Critical section
29.
          spinlock_unlock(&my_spinlock);
30.
31.
          return 0;
32. }
```

What are at least three issues in the code wrt correctness and fairness?

- 1. Init
- 2. Not starvation free
- 3. Convert address of 0

18. Which hardware mechanism gives applications an illusion of almost infinite memory? 4

Virtual memory and page translation

19. What is the MMU and how does it work with page table and TLB for address translation?**6**

Virtual -> Physical translation First check TLB and then check the page table Load page table to TLB if necessary
20. A computer system has a 36-bit virtual address space with a page size of 8K, and 4 bytes per page table entry.a. How many pages are in the virtual address space?
A 36 bit address can address 2^36 bytes in a byte addressable machine. Since the size of a page 8K bytes (2^13), the number of addressable pages is 2^36 / >2^13 = 2^23
b. What is the maximum size of addressable physical memory in this system? 2
With 4 byte entries in the page table we can reference 2^32 pages. Since each page is 2^13 B long, the maximum addressable physical memory size is 2^32 * 2^13 = 2^45 B (assuming no protection bits are used).

c. If the average process size is 8GB, would you use a one-level, two-level, or three-level page table? Why? **4**

8 GB = 2^33 B

We need to analyze memory and time requirements of paging schemes in order to make a decision. Average process size is considered in the calculations below.

1 Level Paging

Since we have 2^23 pages in each virtual address space, and we use 4 bytes per page table entry, the size of the page table will be $2^23 * 2^2 = 2^25$. This is 1/256 of the process' own memory space, so it is quite costly. (32 MB)

2 Level Paging

The address would be divided up as 12 | 11 | 13 since we want page table pages to fit into one page and we also want to divide the bits roughly equally.

Since the process' size is $8GB = 2^33 B$, I assume what this means is that the total size of all the distinct pages that the process accesses is $2^33 B$. Hence, this process accesses $2^33 / 2^13 = 2^20$ pages. The bottom level of the page table then holds 2^20 references. We know the size of each bottom level chunk of the page table is 2^11 entries. So we need $2^20 / 2^11 = 2^9$ of those bottom level chunks.

The total size of the page table is then:

//size of the outer page	//total size of the inner	
table	pages	
1 * 2^12 * 4	+ 2^9 * 2^11 * 4	= 2^20 * (2^-6 + 4) ~4MB

3 Level Paging

For 3 level paging we can divide up the address as follows:

8 | 8 | 7 | 13

Again using the same reasoning as above we need $2^20/2^7 = 2^13$ level 3 page table chunks. Each level 2 page table chunk references 2^8 level 3 page table chunks. So we need $2^13/2^8 = 2^5$ level-2 tables. And, of course, one level-1 table.

The total size of the page table is then:

//size of the outer page table	//total size of the level 2 tables	//total size of innermost tables	
1 * 2^8 * 4	2^5 * 2^8 *4	2^13 * 2^7 * 4	~4MB

As easily seen, 2-level and 3-level paging require much less space then level 1 paging scheme. And since our address space is not large enough, 3-level paging does not perform any better than 2 level paging. Due to the cost of memory accesses, choosing a 2 level paging scheme for this process is much more logical.